
Hashing and Pipelining Techniques for Association
Rule Mining

Mamatha Nadikota, Satya P Kumar Somayajula,Dr. C. P. V. N. J. Mohan Rao
CSE Department,Avanthi College of Engg &Tech ,Tamaram,Visakhapatnam,A,P..,India

Abstract:Apriori is a classic algorithm for learning association
rules. It is designed to operate on databases containing transac-
tions .In This The candidate itemsets and a database is loaded
into the hardware. But capacity of the hardware architecture is
fixed. As number of candidate itemsets or the number of items in
the database is larger than the hardware capacity. So That the
items are loaded into the hardware separately, Due To this The
time complexity is more to load candidate itemsets or database
items into the hardware is in proportion to the number of candi-
date itemsets multiplied by the number of items .in the database.
Increase Of candidate itemsets and a large database would create
a performance blockage. we propose a Hash-based and Pipelined
(HAPPI) architecture for hardware-enhanced association rule
mining. By Using the pipeline methodology to compare itemsets
with the database and gather useful information for reducing the
number of candidate itemsets and items in the database concur-
rently. To find frequent itemsets the database is fed into the
hardware, candidate itemsets are compared with the items in the
database. At the same time, trimming information is collected
from each transaction. Next itemsets are generated from transac-
tions and hashed into a hash table. The useful trimming informa-
tion and the hash table enable us to reduce the number of items in
the database and the number of candidate itemsets. So that we
can effectively reduce the frequency of loading the database into
the hardware. Hashing And Pipelining solves the Performance
bottleneck problem in a priori-based hardware schemes.

INTRODUCTION
Association mining was introduced by it has emerged as a
prominent research area. The association mining problem also
referred to as the market basket problem can be formally
defined as follows. Let I = {i1,i2, . . . , in} be a set of items as S
= {s1, s2, . . ., sm} be a set of transactions, where each
transaction si S is a set of items that is si  I. An association
rule denoted by X  Y, where X,Y  I and X  Y = ,
describes the existence of a relationship between the two
itemsets X and Y.Several measures have been introduced to
define the strength of the relationship between itemsets X and
Y such as support, confidence, and interest. The definitions of
these measures, from a probabilistic model are given below.

),()X(YXPYSupport  , or the percentage of

transactions in the database that contain both X and Y.
)(/),()X(XPYXPYConfidence  , or the percentage of

transactions containing Y in transactions those contain X.
)()(/),()X YPXPYXPYInterest( represents a test

of statistical independence.
Boolean Association Mining
Given a set of items I = {i1, i2………., in}, a transaction t is
defined as a subset of items such that t2I, where 2I = {, {i1},

{i2}, …, {in}, {i1, i2}, …, { i1, i2, …, in}}. In reality, not all
possible transactions might occur. For example, transaction t =
 is excluded.
Let T  2I be a given set of transactions {t1, t2, …, tm}. Every
transaction tT has an assigned weight w’(t). Several possible
weights could be considered,

w’(t) = 1, for all transactions tT.
w’(t) = f(t), where f(t) is the frequency of transaction t, for all

transactions
tT, i.e., how many times the transaction t was repeated
in our database.

w’(t) = |t| * g(t) for all transactions tT, where |t| is the
cardinality of t, and g(t) could be either one of the
weight functions w’(t)’s defined in (i) and (ii). In this
case, longer transactions get higher weight.

w’(t)= v(t) * f(t) for all transactions tT, where v(t) could be
the sum of the prices or profits of those items in t.

The weights w’s are normalized to






T't

)'t('w

)t('w
)t(w , and 1)t(w

Tt




Fig. 1. System architecture.

As shown in Fig. 1, there are three hardware modules in our
system. First, when the database is fed into the hardware, the
candidate itemsets are compared with the items in the database
by the systolic array. Candidate itemsets that have a higher
frequency than the minimum support value are viewed as fre-
quent itemsets. Second, we determine the frequency that each
item occurs in the candidate itemsets in the transactions at the
same time. These frequencies are called trimming information.
From this information, infrequent items in the transactions can
be eliminated since they are not useful in generating frequent
itemsets through the trimming filter. Third, we generate item
sets from transactions and hash them into the hash table, which
is then used to filter out unnecessary candidate itemsets. After
the hardware compares candidate itemsets with the items in the
database, the trimming information is collected and the hash
table is built. The useful information helps us to reduce the
number of items in the database and the number of candidate

Mamatha Nadikota et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1448-1452

1448

itemsets. Based on the trimming information, items are
trimmed if their corresponding occurrence frequencies are not
larger than the length of the current candidate itemsets. In addi-
tion, after the candidate itemsets are generated by merging fre-
quent subitemsets, they are sent to the hash table filter. If the
number of itemsets in the corresponding bucket of the hash
table is less than the minimum support, the candidate itemsets
are pruned. As such, HAPPI solves the bottleneck problem
mentioned earlier by the cooperation of these three hardware
modules. To achieve these goals, we devise the following five
procedures in the HAPPI architecture: support counting, trans-
action trimming, hash table building, candidate generation, and
candidate pruning. Moreover, we derive several formulas to
decide the optimal design in order to reduce the overhead in-
duced by the pipeline scheme and the ideal number of hard-
ware modules to achieve the best utilization.

2. RELATED WORKS

We implemented a systolic array with several hardware cells to
speed up the Apriori algorithm. Each cell performs an ALU
(larger than, smaller than, or equal to) operation, which com-
pares the incoming item with items in the memory of the cell.
This operation generates frequent itemsets by comparing can-
didate item-sets with the items in the database. Since all the
cells can execute their own operations simultaneously, the per-
formance of the architecture is better than that of a single pro-
cessor. However, the number of cells in the systolic array is
fixed. If the number of candidate itemsets is larger than the
number of hardware cells, the pattern matching procedure has
to be separated into many rounds. It is infeasible to load candi-
date itemsets and the database into the hardware for multiple
times. the performance is only about four times faster than
some software algorithms. Hence, there is much room to im-
prove the execution time.

3 HAPPI ARCHITECTURE
Apriori-based hardware schemes have to load candidate item-
sets and the database into the hardware to execute the compari-
son process. Too many candidate itemsets and a huge database
would cause a performance bottleneck. To solve this problem,
we propose the HAPPI architecture to deal with efficient
hardware-enhanced association rule mining. We incorporate
the pipeline methodology into the HAPPI architecture to per-
form pattern matching and collect useful information to reduce
the number of candidate itemsets and items in the database
simultaneously. In this way, HAPPI effectively solves the bot-
tleneck problem the pipeline scheme of the HAPPI architec-
ture is presented. The transaction trimming scheme is given in
Section 4.3. Then, we describe the hardware design of hash
table filter in Section 4.4. Finally, we derive some properties
for performance evaluation in Section 4.5.

4 SYSTEM ARCHITECTURE
The HAPPI architecture consists of a systolic array, a trimming
filter, and a hash table filter. There are several hardware cells
in the systolic array. Each cell can perform the comparison
operation. Based on the comparison results, the cells update the

support counters of candidate itemsets and the occurrence fre-
quencies of items in the trimming information. A trimming
filter then removes infrequent items in the transactions accord-
ing to the trimming information. In addition, we build a hash
table by hashing itemsets generated by each transaction. The
hash table filter then prunes unsuitable candidate itemsets.

Fig. 2. The HAPPI architecture: (a) systolic array, (b) trimming

filter, and c) hash table filter.

Fig :3The procedure flow of one round.

To find frequent k-itemsets and generate candidate (k+l)-
itemsets efficiently, we devise five procedures in the HAPPI
architecture using the three hardware modules: the systolic
array, the trimming filter, and the hash table filter. The proce-
dures are support counting, transaction trimming, hash table
building, candidate generation, and candidate pruning. The
work flow is shown in Fig. 4 The support counting procedure
finds frequent itemsets by comparing candidate itemsets with
transactions in the database. By loading candidate k-itemsets
and streaming transactions into the systolic array, the frequen-
cies that candidate itemsets occur in the transactions can be
determined. Note that if the number of candidate itemsets is
larger than the number of hardware cells in the systolic array,
the candidate itemsets are separated into several groups. Some
of the candidate itemsets are loaded into the hardware cells and
the database is fed into the systolic array. Afterward, the other
candidate itemsets are loaded into the systolic array one by

Mamatha Nadikota et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1448-1452

1449

one. To complete the comparison with all the candidate
itemsets, the database has to be examined several times. To
reduce the overhead of repeated loading, we design two addi-
tional hardware modules, namely, a trimming filter and a hash
table filter. Infrequent items in the database are eliminated by
the trimming filter, and the number of candidate itemsets is
reduced by the hash table filter. Therefore, the time required
for support counting procedure can be effectively reduced.
After all the candidate k-itemsets have been compared with the
transactions, their frequencies are sent back to the system. The
frequent k-itemsets can be obtained from the candidate
k-itemsets whose occurrence frequencies are larger than the
minimum support. While the transactions are being compared
with the candidate itemsets, the corresponding trimming in-
formation is collected. The occurrence frequency of each item,
which is contained in the candidate itemsets in the transactions,
is recorded and updated to the trimming information. After
comparing candidate itemsets with the database, the trimming
information is collected. The occurrence frequencies and the
corresponding transactions are then transmitted to the trimming
filter, and infrequent items are trimmed from the transactions
according to the occurrence frequencies in the trimming infor-
mation. Then, the hash table building procedure generates
(k+1)-itemsets from the trimmed transactions. These (k+l)-
itemsets are hashed into the hash table for processing. Next, the
candidate generation procedure is also executed by the systolic
array. The frequent k-itemsets are fed into the
systolic array for comparison with other frequent k-itemsets.
The candidate (k+l)-itemsets are generated by the systolic in-
jection . techniques The candidate pruning procedure uses the
hash table to filter candidate (k+l)-itemsets that are not possible
to be frequent itemsets. Then, the procedure reverts to the sup-
port counting procedure. The pruned candidate (k+l)-
itemsets are loaded into the systolic array for comparison with
transactions that have been trimmed already. The above five
processes are executed repeatedly until all frequent itemsets
have been found.

Fig. 4 A diagram of the pipeline procedures

4.1 Pipeline Design
We observe that the transaction trimming and the hash table
building procedures are blocked by the support counting
procedure. The transaction trimming procedure has to obtain
trimming information to execute the trimming process.
However, this process cannot be completed until the support
counting procedure compares all the transactions with all the
candidate itemsets. In addition, the hash table building
procedure has to get the trimmed transactions from the trim-
ming filter after all the transactions have been trimmed. This
problem can be resolved by applying the pipeline scheme,

which utilize the three hardware modules simultaneously in the
HAPPI framework. First, we divide the database into Npipe
parts. One part of the transactions in the database is streamed
into the systolic array and the support counting process is per-
formed on all candidate itemsets. After comparing the transac-
tions with all the candidate itemsets, the transactions and their
trimming information are passed to the trimming filter first.
The systolic array then Processes the next group of transac-
tions. After items have been trimmed from a transaction by the
trimming filter, the transaction is passed to the hash table filter,
as shown in Fig. 6, and the trimming filter can deal with the
next transaction. In this way, all the hardware modules can be
utilized simultaneously. Although the pipelined architecture
improves the system’s performance, it increases the computa-
tional overhead because of multiple times of loading candidate
itemsets into the systolic array
4.2 Transaction Trimming
While the support counting procedure is being executed, the
whole database is streamed into the systolic array. However,
not all the transactions are useful for generating frequent item-
sets. Therefore, we filter out items in the transactions according
to Theorem 2 so that the database is reduced. In the HAPPI
architecture, the trimming information records the frequency of
each item in a transaction that appears in the candidate item-
sets. The support counting and trimming information collecting
operations are similar since they all need to compare candidate
itemsets with transactions. Therefore, in addition to transac-
tions in the database, their corresponding trimming information
is also fed into the systolic array in another pipe, while the
support counting process is being executed. As shown in Fig.
7, a trimming vector is embedded in each hardware cell of the
systolic array to record items that are matched with candidate

Fig 5. An example of streaming a transaction and the corresponding trimming
information into the cell. (a) Stream a transaction into the cell. (b) Stream
trimming information into the cell.itemsets.

Mamatha Nadikota et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1448-1452

1450

The ith flag in the trimming vector is set to true if the ith item
in the transaction matches the candidate itemset. After compar-
ing the candidate itemset with all the items in a transaction, if
the candidate itemset is a subset of the transaction, the incom-
ing corresponding trimming information will be accumulated
according to the trimming vector. Since transactions and trim-
ming information are input in different pipes, support counters
and trimming information can be updated simultaneously in a
hardware cell. In Fig. 7a, the candidate itemset < BC > is
stored in the candidate memory, and a transaction (A; B; C; D;
E) is about to be fed into the cell. The resultant trimming vec-
tor after comparing < BC > with all the items in the transaction
is shown in Fig. 7b. Because items B and C are matched with
the candidate itemset, the trimming vector becomes < 0; 1; 1;
0; 0 > . Meanwhile, the corresponding trimming information is
fed into the trimming register, and the trimming information is
updated from < 0; 1; 1; 0; 1 >to < 0; 2; 2; 0; 1 > . After passing
through the systolic array, transactions and their corresponding
trimming information are passed to the trimming filter. The
filter trims off items whose frequencies are less than k. As the
example in Fig. 8 shows, the trimming information of the
transaction (A; B; C; D; E) is < 2; 2; 2; 1; 2 > and the
current k is 2. Therefore, the item D should be trimmed. The
new transaction becomes {A; B; C; D}. In this way, the size of
the database can be reduced. The trimmed transactions are sent
to the hash table filter module for hash table building.

 Fig. 6 The trimming filter

4.3Hash Table Filtering
To build a hardware hash table filter, we use a hash value gene-
rator and hash table updating module. The former generates all
the k-itemset combinations of the transactions and puts the k-
itemsets into the hash function to create the corresponding hash
values. As shown in Fig. 9, the hash value generator comprises
a transaction memory, a state machine, an index array, and a
hash function. The transaction memory stores all the items of a
transaction. The state machine is the controller that generates
control signals of different lengths (k= 2; 3 . . .Þ flexibly. Then,
the control signals are fed into the index array. To generate a
k-itemset, the first k entries in the index array are
utilized. The values in the index array are the indices of the
transaction memory. The item selected by the ith entry of the
index array is the ith item in a k-itemset. By changing
the values in the index array, the state machine can generate
different combinations of k-itemsets from the transaction. The
procedure starts by loading a transaction into the transaction
memory. Then, the values in the index array are reset, and the
state machine starts to generate control signals. The values in
the index array are changed by the different states. Each item
in the generated itemset is passed to the hash function through

the multiplexer. The hash function takes some bits from the
incoming k-itemsets to calculate the hash values.

Fig. 7 The hash value generator

Fig8 The parallel hash table building module.

Consider the example in Fig 8. We assume the current k is 3.
The first three index entries in the index array are used in this
case. The transaction fA; C; E; F; Gg is loaded into the
transaction memory. The values in the index array are initiated
to 0, 1, and 2, respectively, so that the first itemset generated is
< ACE > . Then, the state machine changes the values in the
index array. The following numbers in the index array will be
< 0; 1; 3 > , < 0; 1; 4 > , < 0; 2; 3 > , < 0; 2; 4 > , to name a
few. Therefore, the corresponding itemsets are < ACF > , <
ACG > , < AEF > , < AEG > , and so on. The hash values gen-
erated by the hash value generator are passed to the hash table
updating module. To speed up the process of hash table build-
ing, we utilize N parallel hash value generators so that the
hash values can be generated simultaneously. In addition, the
hash table is divided into several parts to increase the through-
put of hash table building. Each part of the hash table contains
a range of hash values, and the controller passes the incoming
hash values to the buffer they belong to. These hash values are
taken as indexes of the hash table to accumulate the values in
the table. There are four parallel hash value generators. The
size of the whole hash table is 65,536, and it is divided into
four parts. Thus, the range of each part is 16,384. If the incom-
ing hash value is 5, it belongs to the first part of the hash table.
The controller would pass the value to buffer 1. If there are
parallel accesses to the hash table at the same time, only one
access can be executed. The others will be delayed and be han-

Mamatha Nadikota et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1448-1452

1451

dled as soon as possible. The delayed itemsets are stored in the
buffer temporally. Whenever the access port of hash table is
free, the delayed itemsets are put into the hash table. After all
the candidate k-itemsets have been generated, they are
pruned by the hash table filter. Each candidate item set is
hashed by the hash function. By querying the number of item-
sets in the bucket with the corresponding hash value, the can-
didate item set is pruned if the number of itemsets in the bucket
does not meet the minimum support criteria. Therefore, the
number of the candidate itemsets can be reduced effectively
with the help of the hash table filter.

5. PERFORMANCE EVALUATION
Initially, we conduct experiments to evaluate the performance
of several schemes in the HAPPI architecture and DC. The
testing data sets are T10I4D100 with different numbers of
items in the database. The minimum support is set to 0.5 per-
cent. As shown in Fig. 11, the four different schemes are
1. The DC scheme,
2. The systolic array with a trimming filter,
3. The combined scheme made up of the systolic array, The

trimming filter and the hash table filter, and
4. The overall HAPPI architecture with the pipeline design

CONCLUSION

We have proposed the hashing and Pipelining technique for
Association rule mining.we apply the pipelining methodology
in The HAAPI architecture to compare itemsets with the
database and collect useful information to reduce the number
of candidate itemsets and items in the database
concurrently.HAPPI can reduce infrequent items in the
transactions tions and reduce the size of the database
progressively by utilizing the trimming filter.Next HAPPI can
effectively eliminate infrequent candidate itemsets with the
help of the hash table filter.Finally Hashing And Pipelining
solves the Performance bottleneck problem and acquire good
scalability.

REFERENCES:
[1]R. Agarwal, C. Aggarwal, and V. Prasad, “A Tree Projection Algorithm for

Generation of Frequent Itemsets,” J. Parallel and Distributed Computing,
2000.

[2] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association
Rules,” Proc. 20th Int'l Conf. Very Large Databases(VLDB), 1994.

[3] Z.K. Baker and V.K. Prasanna, “Efficient Hardware Data Mining with the
Apriori Algorithm on FPGAS,” Proc. 13th Ann. IEEE Symp. Field-
Programmable Custom Computing Machines (FCCM), 2005.

[4] S. Cong, J. Han, J. Hoeflinger, and D. Padua, “A Sampling-Based
Framework for Parallel Data Mining,” Proc. 10th ACM SIGPLAN Symp.
Principles and Practice of Parallel Programming (PPoPP '05), June
2005.

Authors Biography
 Mamatha.N received M,Sc degree in computer science
from Andhra university in 2007 .where she is currently
working towards M.tech degree in computer science.
Avanthi College of Engg & Tech, Tamaram, Visakhapat-
nam, A.P., India.

Satya P Kumar Somayajula, working as Asst. Profes-
sor, in CSE Department, Avanthi College of Engg &
Tech, Tamaram, Visakhapatnam, A.P., India. He has
received his M.Sc(Physics) from Andhra University,
Visakhapatnam and M.Tech (CST) from Gandhi Insti-
tute of Technology And Management University (GI-
TAM), Visakhapatnam, A.P., INDIA. His research areas
include Image processing, network security and neural
networks.

 Dr. C.P.V.N.J Mohan Rao is Professor in the De-
partment of Computer Science and Engineering and
Principal of Avanthi Institute of Engineering & Tech-
nology - Narsipatnam. He did his PhD from Andhra
University and his research interests include Image
Processing, Networks, Information security, Data
Mining and Software Engineering. He has guided more
than 50 M.Tech Projects and currently guiding four

research scholars for Ph.D. He received many honors and he has been the
member for many expert committees, member of many professional bodies

and Resource person for various organizations.

Mamatha Nadikota et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1448-1452

1452

